Core modules
In the first two years, you will concentrate on physics modules with the addition of an appropriate business module in the second year.
Your final year in WBS is designed to develop a critical understanding of how organisations work, how they are managed, and how they interact with local, national and international environments. You may, for example, take modules covering markets, marketing and strategy and understanding organisational behaviour.
There is flexibility to switch into or out of this stream at any time in your first two years.
Year One
Mathematics for Physicists
All scientists use mathematics to state the basic laws and to analyse quantitatively and rigorously their consequences. The module introduces you to concepts and techniques which will be assumed by future modules. These include: complex numbers, functions of a continuous real variable, integration, functions of more than one variable and multiple integration. You will revise relevant parts of the A-level syllabus, to cover the mathematical knowledge to undertake first year physics modules, and to prepare you for mathematics and physics modules in subsequent years.
Classical Mechanics and Special Relativity
You will study Newtonian mechanics emphasizing the conservation laws inherent in the theory. These have a wider domain of applicability than classical mechanics (for example they also apply in quantum mechanics). You will also look at the classical mechanics of oscillations and of rotating bodies. It then explains why the failure to find the ether was such an important experimental result and how Einstein constructed his theory of special relativity. You will cover some of the consequences of the theory for classical mechanics and some of the predictions it makes, including: the relation between mass and energy, length-contraction, time-dilation and the twin paradox.
Physics Foundations
You will look at dimensional analysis, matter and waves. Often the qualitative features of systems can be understood (at least partially) by thinking about which quantities in a problem are allowed to depend on each other on dimensional grounds. Thermodynamics is the study of heat transfers and how they can lead to useful work. Even though the results are universal, the simplest way to introduce this topic to you is via the ideal gas, whose properties are discussed and derived in some detail. You will also cover waves. Waves are time-dependent variations about some time-independent (often equilibrium) state. You will look at phenomena like the Doppler effect (this is the effect that the frequency of a wave changes as a function of the relative velocity of the source and observer), the reflection and transmission of waves at boundaries and some elementary ideas about diffraction and interference patterns.
Electricity and Magnetism
You will largely be concerned with the great developments in electricity and magnetism, which took place during the nineteenth century. The origins and properties of electric and magnetic fields in free space, and in materials, are tested in some detail and all the basic levels up to, but not including, Maxwell's equations are considered. In addition, the module deals with both dc and ac circuit theory including the use of complex impedance. You will be introduced to the properties of electrostatic and magnetic fields, and their interaction with dielectrics, conductors and magnetic materials.
Physics Programming Workshop
You will be introduced to scientific programming with the help of the Python programming language, a language widely used by physicists. It is quick to learn and encourages good programming style. Python is an interpreted language, which makes it flexible and easy to share. It allows easy interfacing with modules, which have been compiled from C or Fortran sources. It is widely used throughout physics and there are many downloadable free-to-user codes available. You will also look at the visualisation of data.
Quantum Phenomena
This module explains how classical physics is unable to explain the properties of light, electrons and atoms. (Theories in physics, which make no reference to quantum theory, are usually called classical theories.) It covers the most important contributions to the development of quantum physics including: wave-particle 'duality', de Broglie's relation and the Schrodinger equation. It also looks at applications of quantum theory to describe elementary particles: their classification by symmetry, how this allows us to interpret simple reactions between particles and how elementary particles interact with matter.
Astronomy
The Universe contains a bewildering variety of objects - black-holes, red giants, white dwarfs, brown dwarfs, gamma-ray bursts and globular clusters - to name a few. The module introduces these, and shows how, with the application of physics, we have come to know their distances, sizes, masses and natures. The module starts with the Sun and planets and moves on to the Universe as a whole.
Physics Laboratory
The module introduces experimental science and teaches the skills required for successful laboratory work. These include how to work with apparatus, how to keep a laboratory notebook, how to handle data and quantify errors and how to write scientific reports. The module also asks you to think critically and solve problems. Initial experiments build core skills while later experiments explore important areas of physics.
Year Two
Statistical Mechanics, Electromagnetic Theory and Optics
Any macroscopic object we meet contains a large number of particles, each of which moves according to the laws of mechanics (which can be classical or quantum). Yet we can often ignore the details of this microscopic motion and use a few average quantities such as temperature and pressure to describe and predict the behaviour of the object. Why we can do this, when we can do this and how to do it are discussed in the first half of this module.
We also develop the ideas of first year electricity and magnetism into Maxwell's theory of electromagnetism. Establishing a complete theory of electromagnetism has proved to be one the greatest achievements of physics. It was the principal motivation for Einstein to develop special relativity, it has served as the model for subsequent theories of the forces of nature and it has been the basis for all of electronics (radios, telephones, computers, the lot...).
Quantum Mechanics and its Applications
In the first part of this module you will use ideas, introduced in the first year module, to explore atomic structure. You will discuss the time-independent and the time-dependent Schrödinger equations for spherically symmetric and harmonic potentials, angular momentum and hydrogenic atoms. The second half of the module looks at many-particle systems and aspects of the Standard Model of particle physics. It introduces the quantum mechanics of free fermions and discusses how it accounts for the conductivity and heat capacity of metals and the state of electrons in white dwarf stars.
Physics Skills
This module develops experimental skills in a range of areas and includes the design and testing of a functional electronic circuit. The module also introduces the concepts involved in controlling an experiment using a microcomputer. The module explores information retrieval and evaluation, and the oral and written presentation of scientific material.
Mathematical Methods of Physicists
You will review the techniques of ordinary and partial differentiation and ordinary and multiple integration. You will develop your understanding of vector calculus and discuss the partial differential equations of physics (Term 1). The theory of Fourier transforms and the Dirac delta function are also covered. Fourier transforms are used to represent functions on the whole real line using linear combinations of sines and cosines. Fourier transforms are a powerful tool in physics and applied mathematics. The examples used to illustrate the module are drawn mainly from interference and diffraction phenomena in optics (Term 2).
Appropriate Business modules
Year Three
In the third year you will select from an extensive list of WBS modules. Some may be linked to prerequisite modules. For example, if you would like to study International Marketing, generally you will need to have also chosen the Marketing module earlier in the year.
Optional modules
Optional modules can vary from year to year. Example optional modules may include:
- Environmental Physics
- Computational Physics
- Stars and the Solar System
- Modern Foreign Language
- Hamiltonian and Fluid Mechanics
- Marketing
- Supply Chain Management
- Company Law
- Business Data Analytics
- Accounting in Context
- Design in Business
- Principles of Finance