Course structure
Year 1 core modules
Biochemistry and Chemical Science
You will develop an understanding of key concepts necessary to underpin subsequent studies in chemistry, biochemistry, biomedical sciences and molecular biology. Building of the underlying principles of chemistry is essential to understand complex biological systems. This module will introduce the fundamentals of chemistry and link them to the key biomolecules and biochemical processes which form the basis of life.
Cell Biology
You increase your understanding of biological processes at the cellular level. You will explore eukaryotic cell architecture and function with a molecular and mammalian focus, and learn about cell division and the cell cycle, genetic organisation of cells, DNA replication and gene expression. Your exploration of these aspects of cell and molecular biology will be supported by a series of laboratory-based sessions.
Chemical and Biochemical Reactivity
In this module you will take a close look at the basic ideas of kinetics and thermodynamics and explore how they apply to biochemical reactions, in particular to the function of enzymes. You will study the chemistry of the transition metals and consider some of their roles in proteins and pharmaceuticals.
Introduction to Organic Chemistry
You are introduced to the creative science of organic chemistry which mainly looks at molecules composed of, but not limited to, carbon and hydrogen. You will learn the principles of chemical reactivity and mechanisms necessary to understand how and why simple molecules as well as macromolecules react in a certain way. Additionally, you will learn the key concepts in synthetic organic chemistry that will enable you to develop an exquisite control over structure and reactivity with no limit on what molecules you can synthesise.
Structure and Bonding
This module will introduce basic concepts in chemistry related to structure and bonding. Topics include; atomic structure, quantum mechanics, chemical bonding, spectroscopy (UV, NMR, IR), inorganic chemistry (metals and main group) and introduction to symmetry.
Synthetic Laboratory Skills
You learn and practice the core skills of the chemical scientist in this module. From basic laboratory manipulations, separations and purifications to the synthesis and analysis of biomolecules and pharmaceuticals, you will become familiar with a range of laboratory and data skills that will underpin your practical work throughout your degree.
Year 2 core modules
Bioreactors and Fermentation
This industry-linked module develops a broad understanding of bioprocesses and selecting appropriate bioreactors for selective products. This includes bioreactions, principles of microbial fermentation with specific examples (medium constituents, choice of feedstock, media preparation), fermentation conditions (examples, types, mode of operation of fermenters) and design of bioreactors. You discuss some fundamental products of aerobic and anaerobic fermentations with examples from biofuels, biosurfactants, enzymes, probiotics, pharmaceuticals and healthcare. You also discuss scaling up fermentation and waste minimisation issues.
Human Metabolism and Clinical Biochemistry
You gain a broad understanding of the human metabolism, endocrinology and clinical biochemistry. Metabolism, the chemical processes that occurs in living organisms, is examined in the context of carbohydrate and lipid metabolism, cellular respiration and metabolism of drugs. Endocrinology, the study of the physiological role of hormones, is covered in detail, including a review of the mechanisms underpinning hormone action, the roles of second messengers and endocrine system disorders. Enzyme kinetics and enzyme regulation is also a significant topic.
The module will also explore the methods used for the collection, measurement and analysis of clinical samples in the biomedical laboratory. You will also cover the principles and applications of clinical biochemistry investigations used in screening, diagnosis, treatment and monitoring of disease.
Immunology
You gain a solid foundation of the immune system and its role in protection against microorganisms and maintaining human health. You will learn about the functional organisation of the immune system, the immune cells and chemical mediators, antibodies, and cellular processes related to the innate and adaptive immune responses.
Molecular Biology and Bioinformatics
This module introduces you to a range of modern molecular biology concepts and techniques. General molecular biology, molecular biology of genetic diseases and the use of molecular biology for applications such as the production of recombinant proteins and biomedical science forensic applications will be addressed. The new age of molecular biology is underpinned by gene/genome sequencing, sequence analysis and sequence manipulation. You will be given a thorough introduction to the principles of sequence analysis and how these techniques have revolutionised all areas of molecular biology. Particular attention will be paid to the technique of PCR. The module will also introduce bioinformatics concepts around visualising and analysing DNA sequence data, as well as basic molecular data analysis. The module content will be delivered via a series of interactive lectures that will allow students to gain insight into the theoretical aspects of molecular biology and bioinformatics. A series of laboratory practical sessions will introduce the basic techniques that lie at the heart of modern molecular biology such as DNA purification, PCR, restriction digestion, nucleic acid analysis via agarose gels, and sequencing.
Structural and Molecular Biochemistry
You will explore the structural characteristics of the molecules within cells and other made up of living organisms. You focus on structural basis of fundamental biological processes.
Structure Determination
All research, analytical and industrial laboratories require a range of techniques that allow you to determine and predict the chemical structure of molecules and biomolecules. This module covers the most significant molecular structure determination techniques including nuclear magnetic resonance, mass spectrometry, UV-visible and infrared spectroscopies, elemental analysis and crystallography.
Optional work placement year
Work placement
You have the option to spend one year in industry learning and developing your skills. We encourage and support you with applying for a placement, job hunting and networking.
You gain experience favoured by graduate recruiters and develop your technical skillset. You also obtain the transferable skills required in any professional environment, including communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.
Many employers view a placement as a year-long interview, therefore placements are increasingly becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process. Benefits include:
· improved job prospects
· enhanced employment skills and improved career progression opportunities
· a higher starting salary than your full-time counterparts
· a better degree classification
· a richer CV
· a year's salary before completing your degree
· experience of workplace culture
· the opportunity to design and base your final-year project within a working environment.
If you are unable to secure a work placement with an employer, then you simply continue on a course without the work placement.
Final-year core modules
Bioinformatics and Genomics
Modern biology became a data-driven science. The advent of the Next Generation Sequencing technologies started a new era in the study of genetics, revealing new insights into the pathophysiology that underpins the living organism's behaviour. The massive data that produced daily with low cost presents a significant challenge for data storage, analyses, and management solutions. Bioinformatics is a relatively new field that aims to address these challenges by constructing novel software for the analysis, the management and the interpretation of the vast amounts of biological data. This module covers the fundamental principles of genome analysis and bioinformatics. You will learn how to access publicly available biological resources and how to retrieve information about genomic, proteomic and transcriptomic sequences. You will use online and standalone tools to analyse big datasets to discover meaningful biological insights and will learn how to display the results appropriately. You also enhance your critical thinking by studying the literature and using scientific methodologies to interpret their findings. Apart from the theoretical sessions, the module includes practical exercises that involve the analysis of predefined datasets.
Biotherapeutics
Biotherapeutics are medicinal products derived from living organisms. This module looks at the role of a biologist in the upstream and downstream aspects of a typical bioprocess. You cover the molecular and cell biology techniques required during the upstream part of the process including selecting suitable production organisms, recombinant DNA technologies and synthetic biology. You cover the different fermentation strategies and how these relate to the product being manufactured, economics and sustainability of the process. You learn about controlling and monitoring the fermentation process using analytical methods and process analytical technology.
For the downstream processing aspects, you focus on the different separation and purification strategies used for isolating the target product. This module highlights the regulatory and quality management aspects that impact on a bioprocess at all of these stages, in particular the roles of good laboratory and manufacturing practice. You develop an understanding of the multidisciplinary nature of the bioprocessing industry and how a biologist is required to have an appreciation of the engineering, chemistry, economic and regulatory aspects of a bioprocess.
Science Research Project
You complete an in-depth, independent investigation into a specialist aspect of your field of study. In your project you will bring together a range of practical and academic skills developed in previous years of study. Regardless of the nature of the project, this process acts as a capstone experience requiring analysis and critical evaluation of data as well as critical reflection on the potential risks, moral and ethical issues. This piece of work will involve a significant individual contribution on your part. You will be supported by the appointment of an academic staff member as your research supervisor. They will act as a mentor and guide you through the development and completion of your research project.
Finally, you will communicate your independent research by producing a research poster and journal article to allow you to develop essential skills which mirror professional practice when research is presented at scientific conferences and for publication.
Trends in Biochemistry
This module is designed to help you stay at the forefront of the latest innovations and trends in biochemistry and biotechnology.
and one optional module
Biologics and Health Product Development
You will develop the necessary entrepreneurship skills to understand the process of business start-up and be introduced to the necessary tools to manage nutrition, medical, biotech and the health care sector ventures. You will gain an awareness of the real-world challenges associated with the launch of a healthcare product from laboratory bench to the bedside. You will learn to research the market for gaps, design a product to fill that unmet need, and develop a business plan.
Clinical Biochemistry
You explore the function and dysfunction of systems, organs and tissues by measuring biochemical biomarkers. You explore modern analytical techniques used for measuring biochemical markers which aid the diagnosis, treatment and monitoring of diseases. You also explore therapeutic drug monitoring methods including those used to investigate drugs of abuse.