Course structure
Foundation year core modules
Engineering in Practice
This module supports you to use knowledge that you already possess and combine it with engineering knowledge gained through teaching and learning, experimentation, analysis and reflection. Problem-based learning and project-based learning provides core methodologies in the teaching and learning strategy. You are introduced to concepts, techniques and equipment in a guided programme of teaching that uses foundational study skills to think about new concepts, promote ideas development and introduce project management techniques. This culminates in an objective, written review of progress and development though the module and a reflective assessment of personal development.
Engineering Principles
You gain an introduction to engineering physical, thermal, fluid, electrical and mechanical systems in engineering and the scientific laws and principles that govern them. You are prepared for further studies involving these principles of engineering science.
The module is delivered in combined lecture/problem solving tutorial sessions. Laboratory practical sessions support the learning objectives. The problem solving tutorials and the practical sessions enhance the understanding of principles.
Engineering the Future
You are introduced to the importance of design, modelling and simulation in engineering context. You explore the design process and how it is applied in a holistic way. Design ideas are communicated using a number of techniques including sketching and formal engineering drawing, design calculations and written commentary. The technical aspects of engineering design such as manufacturing drawing, modelling, rapid prototyping are introduced.
Global Grand Challenges
You focus on how science can help address some of the global grand challenges that face society. A group project enables you to develop innovative answers to some of the biggest issues of our time based on health and wellbeing, resilient and secure societies, digital and creative economy, sustainable environments and learning for the 21st century. The themes reflect the University’s focus on externally facing research that makes a real, practical difference to the lives of people and the success of businesses and economies.
Materials Science
You gain foundational knowledge of important properties of engineering materials and learn engineering project-based research methods within a guided group learning context.
Flipped learning introduces you to material properties of the four basic categories of engineering materials. Tutorial sessions and group exercises highlight the factors affecting the material usage and sustainability for engineering applications. Practical sessions allow you to explore variables within material recycling methodologies.
Mathematics in Engineering
You are introduced to mathematical notation and techniques. The emphasis is on developing the skills that enable you to analyse and solve engineering problems. Topics studied include algebraic manipulation and equations, trigonometry, trigonometric functions and an introduction to descriptive statistics.
The module is delivered during combined lecture/tutorial sessions. Worked examples illustrate how each mathematical technique is applied. Problem solving tutorial exercises give you the opportunity to practice each skills or techniques.
Year 1 core modules
Engineering Mathematics
This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.
Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.
This module is delivered through a combination of lectures and tutorial sessions.
Group Project - Feasibility Stage
You work in teams to produce a design for a construction client and develop the essential design and employability skills needed in a professional consultancy office such as problem solving, time management, presentation of work and research in a technical context, laboratory skills and report writing. You explore the legal principles of health, safety, environment and ethics facing the professional in the workplace and you take part in a group project week where you work closely with your team through meetings and presentations for the completion of your feasibility studies.
Introduction to Geotechnics and Surveying
You explore the importance of geological processes and the properties of soils and rocks in civil engineering. You perform laboratory practical’s in soil and rock description and geological map interpretation. You learn about instrumentation and observation procedures used in modern engineering surveying practice and learn how to measure large objects in three-dimensional space using various techniques and equipment and identify the associated errors.
Principles of Civil Engineering Construction
You will develop knowledge and understanding of commonly utilised construction methods and components associated with civil engineering construction activities. Teaching sessions explore construction methods and components for the foundations. You then building on this knowledge of house construction and apply it to larger substructure and superstructure civil engineer-ing construction activities, including ground remediation, deep basements, retaining walls, multi-storey structures and bridges.
Lectures and multimedia are used to introduce basic concepts on building construction and services. Video and digital photo-graphs will be used to show examples of site practice. The module assessment includes undertaking a condition survey of a building and produce a technical report/drawing.
Structural Mechanics
This module introduces common types of structure used in engineering, assesses the types of loads they must resist and provides you with the analytical skills necessary to design the components that make up the structure.
Specific areas of study include: basic concepts of force, stress and strain; properties of materials and sections; analysis of frames, beams and columns; equilibrium conditions and statical determinacy; beam bending movement, shear force and deflection; and lightweight cables.
Lectures will introduce each major topic on the module with tutorials used to practise calculations. Laboratory practicals are used to investigate the properties of construction materials and develop a deeper understanding of structural theory.
The module is assessed by in-course assignment and an examination, comprising calculations and short answer questions on the module indicative content.
Sustainable Construction and Materials
You explore the philosophy, theory and key concepts of sustainable development in relation to the built environment. You analyse the potential impacts of engineering design and construction on both the environment, society and you examine the implications of climate change, international protocols and the low-carbon agenda on engineering design, construction, and operation. You develop a holistic approach to engineering practice and become critical of the upstream and downstream impacts of the design, construction, use and disposal of civil engineering artefacts.
The module provides also you with an understanding of the fundamentals of materials’ behaviour, with particular emphasis on metals, timber and brickwork.
Year 2 core modules
Applied Mathematical Methods
You develop mathematical knowledge in differential equations and numerical methods and extend your base of techniques to solve a variety of problems which arise in engineering domains. The emphasis is on developing competence in the identification of the most appropriate method to solve a given problem and its subsequent application.
Construction Management and Professional Skills
Students will gain an understanding of construction management techniques relevant to the construction projects at design and production stages with regards to scheduling, estimating, cost and time control, quality issues and health & safety. Students will also learn how these principles may be applied in the management of a construction project.
Formal lectures will be supported by student led seminars as appropriate in order to provide formative feedback with regards to construction management components. Students will also develop professional skills to support students’ development with regards to employability and career progression. The learning and teaching strategy will also focus on developing the students' detailed understanding and interpretation of the requirements for chartered membership of an engineering professional body.
Geotechnology and Materials
This module further develops your understanding of earth materials and their impact on civil engineering. You will analyse soils and examine how they interact with structures and how they behave under load.
The module will also extend your knowledge of construction materials to include Bituminous materials, Glass, Plastics, Non-ferrous metals, Composites, Smart and Energy-saving materials. These materials will be discussed with respect to their engineering properties and selection criteria for the design and construction of civil engineering structures.
Lectures, involving practical demonstrations, will be used to outline the concepts and techniques augmented with in class discussion/seminars of case studies. Tutorials and assignments will be used to gain skills in applying the techniques to designs.
Assessment will be an in course assignment and an end examination.
Group Project - Conceptual Design Stage
This module provides you with the opportunity to work in teams in order to solve an open-ended employer relevant problem on various areas of the infrastructure required by today’s society. You develop employability skills such as project management, presentation of work, research and commercial awareness in order to support problem solving in a technical engineering context.
The module further helps you to develop a holistic approach to the engineering practice and become critical of the potential impacts of the design and construction of engineering artefacts. You are expected to integrate environmental, social and economic considerations, as well as health and safety concepts, in your project proposals.
It also provides an opportunity for you to apply some of the construction management principles and techniques you learn in the Construction Management module to a typical civil engineering project.
A problem based learning approach is adopted and, where appropriate, supporting lectures / seminars will be delivered to include technical knowledge or skills development. You are assessed through two in-course assignments.
Hydraulics and Hydrology
The basic properties of water at rest and in motion are introduced and used to investigate problems related to the storage of water in bulk and to its conveyance in known quantities through pipelines, rivers and open channels. Consideration is given to the natural water cycle (hydrological cycle) and how man has interacted with it to produce the hydrosocial cycle for his own use and benefit. Rainfall is a major component of the hydrological cycle and the module gives an insight into rainfall types, rainfall losses and rainfall runoff. Water and wastewater treatment are introduced.
Module content is delivered via lectures, tutorials and practical sessions and is formally assessed using one assignment and an end examination.
Structural Analysis and Design
The module will develop your ability to analyse structures and produce designs. You will extend your knowledge to solve elastic statically indeterminate systems and learn how to design common structural elements in accordance to appropriate National and European Standards.
Lectures will be used to introduce you to the techniques and underlying principles. Problem-solving seminars will provide the opportunity for the students to demonstrate understanding and develop competence in the application of these; these will also provide the opportunity for formative feedback.
Assessment comprises a coursework and an end examination.
Optional work placement year
Work placement
You have the option to spend one year in industry learning and developing your skills. We encourage and support you with applying for a placement, job hunting and networking.
You gain experience favoured by graduate recruiters and develop your technical skillset. You also obtain the transferable skills required in any professional environment, including communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.
Many employers view a placement as a year-long interview, therefore placements are increasingly becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process. Benefits include:
· improved job prospects
· enhanced employment skills and improved career progression opportunities
· a higher starting salary than your full-time counterparts
· a better degree classification
· a richer CV
· a year's salary before completing your degree
· experience of workplace culture
· the opportunity to design and base your final-year project within a working environment.
If you are unable to secure a work placement with an employer, then you simply continue on a course without the work placement.
Final-year core modules
Digital Information Management in Construction
The aim of the module is to provide students with the required knowledge and skills to become information managers, or BIM managers in their future careers. The module will study the methodologies to manage digital BIM based projects for the construction and engineering fields.
This module will allow the students manage the different aspects to create, manage and get the other users to work with the BIM collaboration space.
Geotechnical Design
In this module the design process is examined together with the various techniques used in practice. The concepts and methods are applied to a variety of foundation types. The interaction of the structural forces with the ground is considered in addition to the design of ground support and associated earthworks. Lectures will be used to outline the concepts and techniques augmented with in class discussion/seminars of case studies. Seminars and assignments will be used by the students to gain skills in applying the techniques to designs. Assessment will be in the form of a design report (30%) and an examination (70%).
Project
This module extends the development of independent learning skills by allowing you to investigate an area of engineering or technology for an extended period.
You receive training in writing technical reports for knowledgeable readers and you produce a report or dissertation of the work covered. In addition, you give an oral presentation, a poster presentation or both. The topic can be in the form of a research project or a design project.
You develop key skills in research, knowledge application and creation through keynote lectures where appropriate and self-managed independent study. Support is provided through regular tutorial sessions.
Structural Design and Materials
The module develops the structural engineering application of analysis and design concepts and procedures in a range of materials to provide the student with the knowledge required to carry out the design of structural elements and systems. Appropriate European and/or National Standards will be used for the design of structural components of different materials.
Building on the detailed knowledge of construction materials developed in previous modules, students will gain an appreciation of several of the more significant recent changes in the fields of metals and alloys, concrete technology and cement-based composites. Development of new and emerging materials will be explored, including responses to concerns regarding service lifetimes, durability and sustainability.
Water Engineering
The module considers elements of flood risk management, water resources management and natural and man-made infrastructure. It introduces natural watercourses and concepts of their response to rainfall events, including flooding and consideration of flood protection/mitigation methods. The module develops the concepts involved in the design and operation of elements of water supply and wastewater systems, from the estimation of water demand and the evaluation and use of water resources, to the collection and transport of foul and storm water and their eventual discharge to natural watercourses.
The module will also consider climate change and mitigation in relation to water.
Module content is delivered via lectures, seminars and practical sessions.