What you will study
The programme is structured so that students have the opportunity to broaden and deepen their understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. It is built on a comprehensive use of advanced computer-based mechanical engineering design analysis and problem solving using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. Students are also able to gain the management and business skills necessary to take on leadership roles in major engineering projects.
The course is delivered with the support of external industrial speakers who bring their experience into the classroom so that students can learn how real problems can be solved using the techniques they have learned in the lectures. Innovative teaching methods, with the aid of a virtual learning platform, are used inside and outside the classroom to enhance the students' learning experience.
One of the main features of the course is that many of its subject materials are highly research oriented and taught by active and internationally-recognised research academics in the Faculty. This gives students the additional opportunity to deepen their subject interest by selecting a research based project dissertation.
Please note that this is an indicative list of modules and is not intended as a definitive list.
For a student to go on placement they are required to pass every module first time with no reassessments. It is the responsibility of individual students to find a suitable paid placement. Students will be supported by our dedicated placement team in securing this opportunity.
Core modules
Engineering Research Techniques, Entrepreneurship and Quality Management
30 credits
Engineering Research Techniques, Entrepreneurship and Quality Management is a core module for engineering students on various taught MSc programmes. The module is designed to provide the student with the research skills and techniques necessary to select and justify a research topic, plan project execution, use various resources to carry out a literature search and successfully complete the project and other module assignments on the course. It also addresses issues related to presentation of technical reports at MSc. level and for the purpose of wider publication in learned media.
The module further develops the students' knowledge and skills in business and management, with a particular focus on entrepreneurship and innovation. It supports students in producing proposals for enterprise ideas such as new products or services, or innovations in existing processes or organisations. Concepts of total quality management to enhance quality of products and processes in an industrial setting are presented and application of supporting quality tools and techniques are discussed.
The module content is designed to enhance the students' employability potential in a variety of national and international industrial organisations, or career opportunities in research and development arena. It also equips students with a set of skills to set up their own business in an engineering innovation area should they wish to do so.
Computational Fluid Dynamics for Engineering Applications
30 credits
This option module is designed for students in mechanical engineering and allied subject areas to be able to extend existing knowledge and skills of relevant computational techniques and advanced mathematics developed at undergraduate level. Emphasis is placed on the solution to fluids problems in a realistic mechanical engineering context.
On successful completion of the module you will be able to:
- Define and analyse simple engineering fluid flow problems using the Navier Stokes equations. Simplify flow problems and solve them.
- Construct appropriate solid models for CFD analysis, set up the solution domain and generate suitable surface and volume grids via meshing tools.
- Understand both flow physics and mathematical properties of governing of Navier Stokes equations and define appropriate boundary conditions.
- Use CFD software to model flow problems of relevance to mechanical engineers. Analyse the results and compare with available data.
Advanced Stress Analysis and Materials
30 credits
This module is designed as an advanced option to extend your knowledge of the analytical techniques of stress analysis, plasticity theory and some of the more advanced theories behind finite element analysis.
The module also investigates properties of a range of modern materials and associated advanced manufacturing processes with a view to broaden your knowledge and skills when selecting a material for a complex engineering application. Use of case studies from extensive research activities of the academic staff is a main feature of this module, introducing you to career opportunities in industrial research and development.
Engineering Individual Project
60 credits
This is a core module for MSc courses in the School of Mechanical and Automotive Engineering, forming a capstone experience for students on these courses. The module allows you to research and study an engineering topic which is of personal interest, thus allowing you to demonstrate the mastery of your subject, and develop your ability to analyse and evaluate specific areas that may not have been previously covered in-depth in the course.
The vigorous structure of the module provides you with an opportunity to identify an industry-based (or research-focused) project area, establish a feasible hypothesis, find creditable solutions, analyse results and offer recommendations. The module enables you to acquire and appraise new knowledge and apply individual judgement to solve new and often complex engineering problems using cutting-edge technology. It also allows you to demonstrate high levels of responsibility, organisational capability and effective communication with others including the supervisor, wider research community and other stake holders. The module also encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.
The project applications can be individually tailored to support your career plan and prepare you to tackle real industrial problems with maturity and rationality hence enhancing your employability potential.
Option modules (choose one)
Option modules
Advanced CAD/CAM Systems
30 credits
The module covers advanced CAD/CAM techniques in the conceptual design and manufacture and is heavily focussed on the surface modelling and reverse engineering methods prior to manufacture. Also this module will cover rapid manufacturing methods involving mould design and machining tool path optimisation and full machining simulation verification, and machining collision avoidance.
Green Engineering and Energy Efficiency
30 credits
This option module deals with the criteria and practice of sustainable development within engineering industries. To be able to critically assess energy sources as to usage performance of engineering systems, components and processes in order to minimise industrial waste, scrap and pollution through the use of analytical methods; leading to recommendations for the design, specification and manufacture of environmentally benign products.
On successful completion of the module, you will be able to:
- Recognise the importance of National and European regulations in relation to renewable technologies in the construction and automotive industries.
- Discuss environmentally related technologies and materials that are fundamental in a range of industries including construction, structural mechanics, automotive and environmental operations.
- Discuss environmental issues related to resource provision and consumption necessary for the manufacture of engineered products, and analyse potential for the application of alternative energy sources.
- Analyse manufactured product design in relation to materials and other resource requirements and apply key concepts to redesign or design products to be recyclable, sustainable with a minimisation of waste.
- Specify and develop energy efficient and environmentally conscious products.
- Critically evaluate the life cycle assessment in incorporation of sustainability at the conceptual design stage.
Mechatronics Design and Automation
credits
This module aims to develop your understanding of the main principles of robotic, industrial automation and mechatronics systems. It covers:
- mechatronics control and its application in automation;
- the functions of a robot and its embedded systems such as sensors and actuators;
- how to build dynamic models of robotics systems and design feedback control algorithms;
- advanced techniques such as fuzzy logic and digital logic design to optimise control in automation processes; and
- artificial neural networks and adaptive control.
Professional Placement
120 credits
The Professional Placement module is a core module for those students following a masters programme that incorporates an extended professional placement. It provides students with the opportunity to apply their knowledge and skills in an appropriate working environment, and develops and enhances key employability and subject specific skills in their chosen discipline. Students may wish to use the placement experience as a platform for the major project or future career.
It is the responsibility of individual students to find and secure a suitable placement opportunity; this should not normally involve more than two placements which must be completed over a minimum period of 10 months and within a maximum of 12 months. The placement must be approved by the Course Leader, prior to commencement to ensure its suitability. Students seeking placements will have access to the standard placement preparation activities offered by Student Engagement and Enhancement (SEE) group.